
PARALLEL GLOBAL ELIMINATION ALGORITHM AND ARCHITECTURE DESIGN FOR
FAST BLOCK MATCHING MOTION ESTIMATION

Yu-Wen Huang, Chen-Han Tsai, and Liang-Gee Chen

DSP/IC Design Lab., Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University

�yuwen, phenom, lgchen�@video.ee.ntu.edu.tw

ABSTRACT

The critical path of the hardware for global elimination algorithm
(GEA) is too long to meet the real-time constraints for high-end
applications. In this paper, we propose a new parallel GEA and
its corresponding architecture. By dividing candidate blocks into
independent groups and finding the most probable candidates of
each group in parallel, instead of sequentially searching within the
whole search range, parallel design can be developed as an array
of GEA processing elements with much shorter critical path. Be-
sides, the GEA processing element is optimized to reduce 30%
of the gates, and the 2-D data reuse is organized to save 80% of
the SRAM bandwidth, which also reduces a lot of power. Simu-
lation results show that our implementation can achieve real time
processing of D1 30Hz video with search range as H[-64, +63.5]
V[-32, +31.5] while the operating frequency is 70MHz, and the
gate count is 113K. Compared with full search, our gate count is
six times smaller under the same frequency, and the PSNR loss is
at most 0.1-0.2dB.

1. INTRODUCTION

Motion estimation (ME) removes the temporal redundancy within
frames and provides coding systems with high compression ratio.
Block matching algorithm (BMA) is mostly selected as the ME
module in video codecs because of its simplicity and good per-
formance. Among all the block matching algorithms, full-search
block matching algorithm (FSBMA) is the most popular but de-
mands the most computation. For example, real-time ME for CIF
(352�288) 30Hz video with [-16, +15] search range requires 9.3
Giga-operations per second (GOPS). If the frame size is enlarged
to D1 (720�480) 30Hz with [-32, +31] search range, 127 GOPS
is required. Such huge computational complexity is far beyond the
processing capabilities of general purpose processors.

Successive elimination algorithm (SEA) [1][2] can reduce the
heavy computation of FSBMA and maintain the same results as
FSBMA. We proposed a global elimination algorithm (GEA) [3] to
remove the branches and to make the data flow much more regular
for hardware design. However, the drawback of our previous GEA
architecture is the longer critical path. It is difficult to meet the
real-time requirement for high specifications. In this paper, we
propose a new parallel GEA and its corresponding architecture to
solve the encountered problem. The rest of this paper is organized
as follows. The parallel algorithm and architecture are described
in Section 2 and Section 3, respectively. Finally, Section 4 gives a
conclusion.

2. ALGORITHM

The original GEA is described as Equ. (1)-(7).

� � � ����� � �� � (1)

� � ��� �� � �� � � (2)

������� �

���

�����

���

�����

���	� 
	� (3)

� � ��	� 
	� � � � �


� � � ������ 
� � 
� ����� � �

�� � � ������ �� � �� ����� � �

��������	�
 �

���

�����

���

�����

���
� 

� (4)

� � ��
� 

� � ���� � �


� � �� �� � ������ 
� � 
� ����� � �

�� � �� �� � ������ �� � �� ����� � �

��������� �

�
�
���

���

�
�
���

���

�������� � ��������	�
� (5)

���� ��� � �������������� �� � ����
� (6)

�� � ���� ��������� �� � ������� ���� (7)

�������� �

����

���

����

���

����� 
�� ������ �� 
 � �� ���

The search range is ���� � � ��, ����� denotes a search posi-
tion, and ��� �� is the subblock index. Level is indicated by �, and
a block of size ��� is divided into ����� subblocks of size
�������������. The current block data and the search area
data are denoted as � and �, respectively. �� is the sum of all
pixels within a subblock in current block, and �� is the sum of
all pixels within a subblock in a candidate block. Originally, the
matching criterion is sum of absolute differences (���) for all
pixels in the block. Here, we define subsampled-��� (����)
as sum of absolute differences between �� and ��. After all
the ��������� values are calculated, we will find the most
probable � motion vectors ���� ��� whose ���� values are the
smallest. The � -th smallest ���� among all candidate blocks
is denoted as ����
 . Finally, we compute the ��� at the �
search positions to find the final motion vector (�� ). In our pre-
vious work [3], we found that � � � and � � 	 are suitable



m

n

m

n

g
r
o
u
p
0

g
r
o
u
p
0

g
r
o
u
p
6

g
r
o
u
p
6

g
r
o
u
p
1

g
r
o
u
p
1

g
r
o
u
p
7

g
r
o
u
p
7

(a) (b)

Fig. 1. Scanning order of search positions for ���� calculation:
(a) sequential GEA; (b) parallel GEA with �=8.

parameters for CIF and QCIF under � � �� and � � �� or
� � ��. We also proposed an architecture with a systolic module
and an 16-pel SAD tree to efficiently calculate ���� and ���,
and with a comparator tree to record the� most probable motion
vectors. The comparator tree is designed to match the throughput
of generating ���� values, so the critical path of the compara-
tor tree is roughly proportional to log���

� . However, for high-end
applications with larger frame size, the search range and the �
parameter should be enlarged (e.g. �=64, �=15 or 31) to obtain
high video quality. Moreover, our previous architecture computes
���� sequentially, so the operating frequency must be increased
with search range and frame size. Consequently, parallel algorithm
and architecture with short critical path are demanded.

In order to compute the ����’s of several candidates blocks
in parallel, we divide them into � groups. Candidate blocks with
the same value of ��� are grouped together, and the the most
probable � motion vectors with the smallest ���� are found
separately for each group. Hence, after all the ���� values are
estimated, ��� values of the � � � search positions are fur-
ther computed to get the final motion vector. Although the � � �
most probable candidates do not correspond to the� � � smallest
���� values within the whole search range, the parallel GEA
does not suffer noticeable quality degradation because the � � �
globally smallest���� values usually belong to different groups.
The collection of� candidates in each of the � groups should be
similar to the� �� candidates with globally smallest ���� val-
ues. In this way, � duplications of the original GEA architecture
can be configured as an array of GEA processing elements (PE’s)
to support parallel scanning of search positions and parallel cal-
culation of ���� values. Figure 1 illustrates the scanning order.
Besides, � is much smaller than � � � , which indicates that the
critical path of comparator tree in each GEA PE can be reduced at
the algorithmic level.

Many conditions have been tested to verify the quality of our
parallel GEA. In our experiments, we embed parallel GEA with
�=8 and �=3 into an MPEG-4 simple profile encoder. The reso-
lution of 	� and �� is truncated from 12-bit to eight-bit in order
to save more area and to reduce the critical path for hardware. The
other parameter sets are �CIF 30Hz [-32, +31.5] 384-2048Kbps�
and �D1 30Hz H[-64, +63.5] V[-32, +31.5] 1536-8192Kbps�. CIF
sequences are Foreman, Hall Monitor, Mobile Calendar, Stefan,
and Table Tennis. D1 sequences are two clips from the movie,
Crouching Tiger Hidden Dragon. One clip is the scene with two
actresses fighting in the courtyard, and the other clip is the leading

+

++

+

+

+

+

+

+

+

+
+

+

+

+

sum30

sum20

sum10

sum00

+

++

+

+

+

+

+

+

+

+
+

+

+

+

sum31

sum21

sum11

sum01

+

++

+

+

+

+

+

+

+

+
+

+

+

+

sum32

sum22

sum12

sum02

+

++

+

+

+

+

+

+

+

+
+

+

+

+

sum33

sum23

sum13

sum03

(12-bit) (12-bit) (12-bit) (12-bit)

(a)

+

++

+

+

+
sum30

sum20

sum10

sum00

10-bit sum31

sum21

sum11

sum01

sum32

sum22

sum12

sum02

sum33

sum23

sum13

sum03

(8-bit)

MSB 8-bit

+

++

+

+

+
10-bit

(8-bit)

MSB 8-bit

+

++

+

+

+
10-bit

(8-bit)

MSB 8-bit

+

++

+

+

+
10-bit

(8-bit)

MSB 8-bit

(b)

Fig. 2. Systolic module to generate 16 subblock sums of 4�4
pixels: (a) original; (b) proposed.

actor “playing” with the leading actress on bamboos. Compared
with FSBMA, the average PSNR losses for the seven sequences
are only 0.16, 0.13, 0.05, 0.00, 0.14, -0.02, 0.05dB, respectively.
Note that Lagrangian mode decision [4] is applied for both GEA
and FSBMA.

3. ARCHITECTURE

In this section, �=16, 
=2, �=8, �=3, and search range as large
as H[-64, +63.5] V[-32, +31.5] are used as an example to explain
the parallel GEA design. The specification is D1 30Hz.

3.1. Systolic Module

The purpose of the systolic module is to generate 16 subblock
sums of 4�4 pixels in parallel. As shown in Fig. 2, the input
is a row of 16�1 pixels. After consecutive 16 rows of pixels are
inputted, the 16 subblock sums at search position ������ are pro-
duced. The systolic module utilizes vertical data reuse, so the sub-
block sums at the search positions ��������-����� �� can be
obtained in the following ��� � �� cycles. The improved systolic
module not only removes the redundant computation of subblock
sums but also reduces the resolution of subblock sums. The gate
count of this part is reduced from 6.0K to 4.7K.



+

AD00 AD01 AD02 AD03AD10 AD11 AD12 AD13AD20 AD21 AD22 AD23AD30 AD31 AD32 AD33

+++++++

+ +

+

+

SSAD

+ +

+

Fig. 3. SAD Tree to compute ����/���

Max Value

SSAD0_Reg MV0_Reg SSAD1_Reg MV1_Reg SSAD2_Reg MV2_RegSSADnew MVnew

MAXMAX

MAX

EQU EQU EQU

CHECK

Stall

(a)

Tag=2'd1

Max Tag Only

Max Value & TagMax Value & Tag

SSAD0_Reg MV0_Reg SSAD1_Reg MV1_Reg SSAD2_Reg MV2_RegSSADnew MVnew

MAXMAX

MAX

EQU EQU EQU

Stall

Tag=2'd0 Tag=2'd1 Tag=2'd2Tag=2'd3

Tag=2'd0 Tag=2'd2

(b)

Fig. 4. Comparator tree to find the three smallest ���� values:
(a) original; (b) proposed.

3.2. SAD Tree

The SAD tree is illustrated in Fig. 3, and the goal is to compute
����/��� values. An AD unit computes the absolute differ-
ence of two eight-bit samples. When SAD tree is used to generate
���� values, the inputs are 16 subblock sums of current block
and 16 subblock sums of a candidate block. The throughput is the
same as the systolic module, i.e. one candidate block per cycle (ex-
cept the first candidate block at each column of search positions).
When SAD tree is used to compute ��� values, the inputs are
rows of current block data and search area data, and its output is
fetched to a 16-bit accumulator. It takes 16 cycles for one candi-
date block to compute ���. Due to the bit-width reduction of
�� and ��, the gate count of this part is reduced from 4.6K to
2.8K.

3.3. Comparator Tree

The purpose of the comparator tree is to find the three smallest
���� values among one group of candidate blocks. The through-
put is also matched with the systolic module and the SAD tree. The
concept is to keep the up-to-date three smallest ���� values and
their corresponding �� ’s in the registers, compare the new com-

Systolic Module

SAD Tree

MV Cost Bias

CMP Tree

16 subblock sums CS Registers

SSAD/SAD value

16x1 Pels

Current Block Pels
Search Area Pels

To Accumulators

MV Predictor
Current MV

Most Probable MV Stall

Select

(a)

CS
Reg

GEA
PE0

GEA
PE1

GEA
PE2

GEA
PE3

GEA
PE4

GEA
PE5

GEA
PE6

GEA
PE7

On-Chip SRAM Interpolation

Control
Unit

System BusSystem Bus

(b)

Fig. 5. Illustration of the motion engine: (a) GEA processing ele-
ment; (b) system block diagram.

ing ���� value with the three stored values, and replace maxi-
mum stored values by the new ���� if it is larger than the new
one. Figure 4 illustrates the comparator tree. The MAX unit out-
puts the larger value of its two inputs, and the EQU unit tells if the
two given inputs are the same. The previous architecture shown
in Fig. 4(a) finds the maximum ���� value and feed it back to
compare with three stored values to see if a stored value should
be replaced. The CHECK unit is to ensure that only one stored
value will be replaced if more than one stored values are equal to
the maximum. Stall signal should be activated when the invalid
���� value is generated from SAD tree for the first 15 cycles of
a column of search positions. We shorten the critical path in three
aspects. First, at the algorithmic level, search positions are divided
into eight groups. Originally, if�=24, we will have to find the 24
smallest values, but now only three smallest values in each group
are required. Second, the bit-width of ���� is reduced from
16-bit to 12-bit. Third, as shown in Fig. 4(b), instead of feeding
the maximum ���� value back to compare for replacement, we
give each ���� value an unique 2-bit tag and feed the tag with
the maximum ���� back for comparison. The gate count of this
part is reduced from 1.5K to 1.1K.

3.4. Entire Motion Engine

Figure 5(a) illustrates a GEA processing element (PE). The sys-
tolic module, SAD tree, MV cost generator, and comparator tree
are configured in cascoding. The MV cost generator, which re-
quires only 0.6K gates, adds a bias of motion information to the
distortion function (known as Lagragian method [4]) and provides
additional coding gain of 0.2-1.0 dB in PSNR for the MPEG-4
simple profile encoder. The gate count of a GEA PE is 11.3K. Fig-



ure 5(b) illustrates the entire ME accelerator. Current block data
and search area data are loaded from external SDRAM to on-chip
SRAM’s. We adopt data reuse of overlapped search area between
two horizontally adjacent macroblocks (MB’s) to reduce the bus
bandwidth from 477 Mbytes/sec to 71 Mbytes/sec. The interpola-
tion circuit is used to generate half-pixels. Besides, thanks to the
versatility of SAD tree, advanced prediction (AP) mode (four 8�8-
MV’s for an MB) is also supported. Inter mode selection between
16�16 and 8�8 configurations of an MB is done after half-pixel
ME, and intra/inter mode decision are also included in the acceler-
ator. In general, an MPEG-4 simple profile encoder with our ME
accelerator provides better coding performance of 0.5 dB in PSNR
than the reference software using FSBMA.

The sequential GEA only utilizes the data reuse in the vertical
direction by systolic module to compute the ���� values. For
one column of 64 search positions, 79 rows of 16�1 pixels are
fetched, and 1264 bytes of memory access are required. The par-
allel GEA utilizes not only the vertical but also the horizontal data
reuse. As mentioned before, ���� values of eight columns of
search positions are generated in parallel. In order to achieve par-
allel ���� calculation, 79 rows of 23�1 pixels (1817 bytes) are
fetched. Let us denote the fetched 23�1 pixels from left to right
as p0-p22. The first 16 pixels, p0-p15, are sent to PE0, p1-p16
are sent to PE1, ..., and p7-p22 are sent to PE7. In this way, com-
pared with the sequential GEA (1264 bytes for one column), par-
allel GEA is much more efficient in on-chip SRAM access (1817
bytes for eight columns, i.e. 227 bytes for one column on average).
The total bandwidth of on-chip SRAM for ���� calculation is
thus reduced from 6.55 Gbytes/sec to 1.18 Gbytes/sec.

The numbers of cycles to compute �� values, ���� val-
ues, integer ��� values, and half ��� values are 16, 1264, 384,
and 58, respectively. Therefore, for processing an MB, about 1730
cycles are required (including pipelines and mode decision). For
D1 30Hz, there are 40,500 MB’s in a second, so the required fre-
quency is about 70 MHz. We use one 32x128 dual-port SRAM
and eight 400x32 dual-port SRAM’s to buffer current block data
(16�16 pels � 2) and the search area data (160�80 pels), respec-
tively, for two horizontally adjacent MB’s. The advantage of dual-
port SRAM’s is that the loading of pixels via bus for the right MB
of an MB pair and the ME process for the left MB can use differ-
ent SRAM ports, so that they can be executed at the same time.
If only single-port SRAM’s are available, the two tasks cannot be
operated simultaneously, and the operating frequency should be in-
creased to 100-120 MHz depending on the bus traffic and protocol
(assume the bus is 32-bit wide).

3.5. Comparison

We compare our implementation with 1-D semi-systolic FSBMA
array architecture [5] due to its high flexibility of search range,
scalability of processing elements, and 100% utilization. The re-
sults are shown in Table. 1. The gate count of our design is four,
eight, and 16 times smaller than 512-PE, 1024-PE, and 2048-PE
array, respectively, while the minimum working frequency of our
design for D1 30Hz H[-64, +63] V[-32, +31] is 0.42, 0.84, and
1.67 times of the three array configurations. Apparently, our de-
sign is more efficient in area and speed. However, the on-chip
SRAM access is larger than FSBMA architectures. As for the
functionality, our design is the most rich and includes integer ME,
half ME, AP mode, and Lagrangian mode decision. The video
quality of an MPEG-4 simple profile encoder adopting our ME ac-

Table 1. Comparison of ME architectures under the specification
of D1 30Hz H[-64, +63] V[-32, +31].

Architecture 8-Parallel GEA 512-PE 1-D Array 1024-PE 1-D Array

Bus Bandwidth

SRAM Bandwidth

Gate Count

Working Frequency

SRAM Size

Functionality

113 K

70 MHz

71 Mbytes/sec

13.312 Kbytes 13.312 Kbytes 13.312 Kbytes

1842 Mbytes/sec

71 Mbytes/sec 71 Mbytes/sec

2048-PE 1-D Array

13.312 Kbytes

71 Mbytes/sec

Integer ME, Half
ME, AP Mode,
Lagrangian MB
Mode Decision

Integer ME
(FSBMA)

Integer ME
(FSBMA)

Integer ME
(FSBMA)

166 MHz 83 MHz 42 MHz

498 Mbytes/sec 249 Mbytes/sec 124 Mbytes/sec

448 K 896 K 1792 K

celerator is 0.1-0.2 dB worse than that of adopting FSBMA and
Lagrangian mode decision, but is significantly better than the ref-
erence software.

4. CONCLUSION

This paper presents a new parallel global elimination algorithm
and architecture for fast block matching. By rejecting less possi-
ble candidate blocks with simplified distortion estimation, only a
few most probable candidates are required to determine the final
motion vector with fine distortion estimation. The computational
complexity of our algorithm is about 10% of the full search. Be-
sides, candidate blocks are divided into independent groups so that
the coarse distortion estimation of several search positions can be
executed in parallel. A parallel GEA architecture design is also in-
troduced. Many design techniques, such as systolic flow, 2-D data
reuse, reuse of overlapped search area, and resource sharing, are
proposed to maximize the overall system performance. Our ac-
celerator is much more area-speed efficient than full search archi-
tectures and provides better coding performance than the MPEG-4
reference software.

5. REFERENCES

[1] W. Li and E. Salari, “Successive elimination algorithm for
motion estimation,” IEEE Transactions on Image Processing,
vol. 4, no. 1, pp. 105–107, January 1995.

[2] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel suc-
cessive elimination algorithm for block matching motion esti-
mation,” IEEE Transactions on Image Processing, vol. 9, no.
3, pp. 501–504, March 2000.

[3] Y. W. Huang, S. Y. Chien, B. Y. Hsieh, and L. G. Chen, “An
efficient and low power architecture design for motion estima-
tion using global elimination algorithm,” in Proc. of IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, 2002, pp. 3120–3123.

[4] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J.
Sullivan, “Performance comparison of video coding standards
using lagragian coder control,” in Proc. of IEEE International
Conference on Image Processing, 2002.

[5] K. M. Yang, M. T. Sun, and L. Wu, “A family of vlsi
designs for the motion compensation block-matching algo-
rithm,” IEEE Transactions on Circuits and Systems, vol. 36,
no. 2, pp. 1317–1325, October 1989.


	footer1: 


